24 research outputs found

    Elephant Search with Deep Learning for Microarray Data Analysis

    Full text link
    Even though there is a plethora of research in Microarray gene expression data analysis, still, it poses challenges for researchers to effectively and efficiently analyze the large yet complex expression of genes. The feature (gene) selection method is of paramount importance for understanding the differences in biological and non-biological variation between samples. In order to address this problem, a novel elephant search (ES) based optimization is proposed to select best gene expressions from the large volume of microarray data. Further, a promising machine learning method is envisioned to leverage such high dimensional and complex microarray dataset for extracting hidden patterns inside to make a meaningful prediction and most accurate classification. In particular, stochastic gradient descent based Deep learning (DL) with softmax activation function is then used on the reduced features (genes) for better classification of different samples according to their gene expression levels. The experiments are carried out on nine most popular Cancer microarray gene selection datasets, obtained from UCI machine learning repository. The empirical results obtained by the proposed elephant search based deep learning (ESDL) approach are compared with most recent published article for its suitability in future Bioinformatics research.Comment: 12 pages, 5 Tabl

    DBBRBF- Convalesce optimization for software defect prediction problem using hybrid distribution base balance instance selection and radial basis Function classifier

    Full text link
    Software is becoming an indigenous part of human life with the rapid development of software engineering, demands the software to be most reliable. The reliability check can be done by efficient software testing methods using historical software prediction data for development of a quality software system. Machine Learning plays a vital role in optimizing the prediction of defect-prone modules in real life software for its effectiveness. The software defect prediction data has class imbalance problem with a low ratio of defective class to non-defective class, urges an efficient machine learning classification technique which otherwise degrades the performance of the classification. To alleviate this problem, this paper introduces a novel hybrid instance-based classification by combining distribution base balance based instance selection and radial basis function neural network classifier model (DBBRBF) to obtain the best prediction in comparison to the existing research. Class imbalanced data sets of NASA, Promise and Softlab were used for the experimental analysis. The experimental results in terms of Accuracy, F-measure, AUC, Recall, Precision, and Balance show the effectiveness of the proposed approach. Finally, Statistical significance tests are carried out to understand the suitability of the proposed model.Comment: 32 pages, 24 Tables, 8 Figures

    DSTATCOM deploying CGBP based icosϕ neural network technique for power conditioning

    Get PDF
    AbstractPresent investigation focuses design & simulation study of a three phase three wire DSTATCOM deploying a conjugate gradient back propagation (CGBP) based icosϕ neural network technique. It is used for various tasks such as source current harmonic reduction, load balancing and power factor correction under various loading which further reduces the DC link voltage of the inverter. The proposed technique is implemented by mathematical analysis with suitable learning rate and updating weight using MATLAB/Simulink. It predicts the computation of fundamental weighting factor of active and reactive component of the load current for the generation of reference source current smoothly. It’s design capability is reflected under to prove the effectiveness of the DSTATCOM. The simulation waveforms are presented and verified using both MATLAB & real-time digital simulator (RTDS). It shows the better performance and maintains the power quality norm as per IEEE-519 by keeping THD of source current well below 5%

    Explainable artificial intelligence for Healthcare applications using Random Forest Classifier with LIME and SHAP

    Full text link
    With the advances in computationally efficient artificial Intelligence (AI) techniques and their numerous applications in our everyday life, there is a pressing need to understand the computational details hidden in black box AI techniques such as most popular machine learning and deep learning techniques; through more detailed explanations. The origin of explainable AI (xAI) is coined from these challenges and recently gained more attention by the researchers by adding explainability comprehensively in traditional AI systems. This leads to develop an appropriate framework for successful applications of xAI in real life scenarios with respect to innovations, risk mitigation, ethical issues and logical values to the users. In this book chapter, an in-depth analysis of several xAI frameworks and methods including LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations) are provided. Random Forest Classifier as black box AI is used on a publicly available Diabetes symptoms dataset with LIME and SHAP for better interpretations. The results obtained are interesting in terms of transparency, valid and trustworthiness in diabetes disease prediction.Comment: Chapter-6: Accepted Book Chapter in: Transparent, Interpretable and Explainable AI Systems, BK Tripathy & Hari Seetha (Editors), CRC Press, May 202

    Application of Swarm Intelligence Based Routingprotocols for Wireless Adhoc Sensor Network

    No full text
    The enormous growth of wireless sensor network (WSN) research has opined challenges about their ease in implementation and performance evaluation. Efficient swarm intelligence based routing protocols that can be used to obtain the application specific service guarantee are the key design issues in designing a WSN model. In this paper, an experimental testbed is designed with 100 sensor nodes deployed in a dense environment to address the scalability and performance issues of WSN. In this paper, we use Flooded Piggyback (FP) and SC-MCBR ant colony based routing along with AODV and MCBR Tree in order to design an efficient WSN model. Finally, simulation results are presented with various performance measures to understand the efficacy of the proposed WSN design

    An Education Process Mining Framework: Unveiling Meaningful Information for Understanding Students’ Learning Behavior and Improving Teaching Quality

    No full text
    This paper focuses on the study of automated process discovery using the Inductive visual Miner (IvM) and Directly Follows visual Miner (DFvM) algorithms to produce a valid process model for educational process mining in order to understand and predict the learning behavior of students. These models were evaluated on the publicly available xAPI (Experience API or Experience Application Programming Interface) dataset, which is an education dataset intended for tracking students’ classroom activities, participation in online communities, and performance. Experimental results with several performance measures show the effectiveness of the developed process models in helping experts to better understand students’ learning behavioral patterns

    Performance Measures of Ultra-Wideband Communication System

    No full text
    Ultra-Wideband (UWB) has the potential to become a viable and competitive wireless technology for short-range high rate Wireless personal area networks (WPANs) as well as lower-rate and low power causing low cost devices and networks. This paper discusses properties of Gaussian pulses and derivatives thereof used for UWB signalling. The power spectral density(PSD) of signals sent into channel appear as discrete components resembling spikes with amplitudes that could adversely interfere with established communication systems. In this, mathematical model for the analysis of PSD in the channel is introduced. PSD for Time Hopping UWB (TH-UWB) signals using PPM (Pulse Position Modulation) technique is derived and simulated in the MATLAB 7.0 environment. Results show that TH-UWB PPM is a potential candidate for the fourth generation broadband wireless networks. Finally, it is established that the introduction of randomness into transmitted signal has the effect of decreasing the amount of interference power

    DSTATCOM deploying CGBP based icosϕ neural network technique for power conditioning

    No full text
    Present investigation focuses design & simulation study of a three phase three wire DSTATCOM deploying a conjugate gradient back propagation (CGBP) based icosϕ neural network technique. It is used for various tasks such as source current harmonic reduction, load balancing and power factor correction under various loading which further reduces the DC link voltage of the inverter. The proposed technique is implemented by mathematical analysis with suitable learning rate and updating weight using MATLAB/Simulink. It predicts the computation of fundamental weighting factor of active and reactive component of the load current for the generation of reference source current smoothly. It’s design capability is reflected under to prove the effectiveness of the DSTATCOM. The simulation waveforms are presented and verified using both MATLAB & real-time digital simulator (RTDS). It shows the better performance and maintains the power quality norm as per IEEE-519 by keeping THD of source current well below 5%. Keywords: CGBP based icosϕ neural network, DSTATCOM, MATLAB, RTD
    corecore